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Statistical characteristics of turbulence in the near-surface region of a steady open-
channel flow are examined using new data obtained in a high-Reynolds-number
large-eddy simulation using a dynamic subgrid-scale model. These data, which corre-
spond to a Reynolds number Re∗ = 1280 based on the total depth and shear velocity
at the bottom wall, are systematically compared with those found in available di-
rect numerical simulations in which Re∗ is typically one order of magnitude smaller.
Emphasis is put on terms involved in the turbulent kinetic energy budget (domi-
nated by dissipation and turbulent transport), and on the intercomponent transfer
process by which energy is exchanged between the normal velocity component and
the tangential ones. It is shown that the relative magnitude of the pressure–strain
correlations depends directly on the anisotropy of the turbulence near the bottom of
the surface-influenced layer, and that this anisotropy is a strongly decreasing function
of Re∗. This comparison also reveals the Re∗-scaling laws of some of the statistical
moments in the near-surface region, especially those involving vorticity fluctuations.
Velocity variances, length scales and one-dimensional spectra are then compared with
predictions of the rapid distortion theory elaborated by Hunt & Graham (1978) to
predict the effect of the sudden insertion of a flat surface on a shearless turbulence.
A very good agreement is found, both qualitatively and quantitatively, outside the
thin viscous sublayer attached to the surface. As the present high-Reynolds-number
statistics have been obtained after a significant number of turnover periods, this
agreement strongly suggests that the validity of the Hunt & Graham theory is not
restricted to short times after surface insertion.

1. Introduction
Turbulence near approximately flat shear-free gas–liquid interfaces occurs in a

wide variety of environmental and industrial flows. This type of turbulence is often
seen in rivers, lakes and ponds where it results from production by shear near
the bottom wall or by unstable stratification. In engineering problems, it occurs
in situations as different as heat film exchangers, open agitated vessels and tanks
partially filled with liquid propellants, and it governs the large-scale dynamics of
ship wakes. The structure of such a turbulence is the key to the understanding
and prediction of heat and mass transfer rates across gas–liquid interfaces because
most of the resistance to the transfer is generally located just below the interface,
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owing to the respective values of the Prandtl/Schmidt numbers in both phases. This
connection with heat and mass transfer problems has provided a strong motivation
for clarifying the dynamical processes at work in the surface region and has led to
many experimental and numerical investigations during the last two decades. From
a more conceptual viewpoint, understanding the effect of a flat shear-free surface on
an underlying homogeneous isotropic turbulence is a fundamental issue in turbulence
modelling because any model aimed at predicting second-order turbulence statistics
near impermeable surface should reproduce the essential features of this canonical
situation.

Detailed experiments have established the major trends of the vertical distribution
of the r.m.s. velocity fluctuations in open-channel flows (Komori et al. 1982; Nezu &
Rodi 1986; Rashidi & Banerjee 1988) as well as in open water tanks where turbulence
is produced by oscillating a grid vertically (McDougall 1979; Brumley & Jirka 1987).
In both cases it has been shown that when the surface is approached, the vertical
fluctuation is damped while the tangential ones are enhanced. In open-channel flows,
the connection between the bursts generated near the bottom wall and the coherent
motions which exist in the surface region and provide most of the ‘renewal’ of the
surface has also been carefully studied (Nakagawa & Nezu 1977, 1981; Rashidi &
Banerjee 1988; Komori, Murakami & Ueda 1989; Komori, Nagaosa & Murakami
1990). More recently, several investigations have focused on the detailed topology
of the large-scale structures in the surface region (Rashidi 1997; Kumar, Gupta &
Banerjee 1998).

Although much has been gained from these experiments, they have all suffered
from the technical difficulties encountered in performing measurements very close
to a deformable interface on which capillary ripples and contamination by surface-
active materials can hardly be avoided. For that reason the determination of the r.m.s.
velocities is not very accurate in the top few millimeters of the flow and many impor-
tant quantities like vorticity fluctuations or dissipation have not yet been obtained.
Moreover, as is usual in turbulent flows, statistical correlations involving pressure
are beyond present experimental capabilities whereas they are of central importance
to understanding how the surface affects the dynamics of the flow. To overcome
these limitations, direct numerical simulation (DNS) has been extensively used during
the last decade, mainly in the open-channel flow configuration. This technique has
confirmed the experimental findings previously obtained and has produced detailed
statistics throughout the flow as well as visualizations of the large-scale structures
and their connection with bursting events (Lam & Banerjee 1992; Handler et al.
1993; Komori et al. 1993; Borue, Orszag & Staroselsky 1995; Handler et al. 1999).
Some of these studies have also revealed some characteristics of the surface viscous
sublayer in which the tangential vorticity components fall to zero in order to satisfy
the shear-free boundary condition (e.g. Nagaosa 1999). They have also significantly
contributed to describing the vorticity dynamics near the free surface (Leighton et al.
1991; Pan & Banerjee 1995) and the characteristics of the intercomponent transfer
by which the energy of the vertical component is redistributed to the tangential ones
(Swean et al. 1991, hereinafter referred to as SLHS; Handler et al. 1993; Komori
et al. 1993; Nagaosa & Saito 1997; Nagaosa 1999).

The main limitation of all these numerical investigations is related to the small-
ness of the Reynolds number at which they can currently be performed. In the
contributions mentioned above, Re∗ (Reynolds number based on total depth and
shear velocity at the bottom wall) ranges approximately from 130 to 250. Hence
the surface-influenced region overlaps the logarithmic layer induced by the bottom
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shear, with the consequence that the turbulent field ‘seen’ by the surface is strongly
anisotropic. Furthermore these flow conditions imply that the thickness of the vis-
cous sublayer attached to the free surface is a significant fraction (often more than
50%) of the integral length scale. Consequently it is difficult to disentangle viscous
and inviscid processes near the surface at such Reynolds numbers. Compared to the
canonical case of high-Reynolds-number isotropic turbulence interacting with a free
surface, both aspects greatly complicate the fundamental understanding of dynamical
processes intrinsically related to the presence of the surface.

The aim of the present investigation is to complete the picture provided by available
low-Reynolds-number investigations by examining the near-surface results obtained
in a high-Reynolds-number large-eddy simulation (LES) of an open-channel flow
performed at a Reynolds number Re∗ = 1280. Despite the well-known drawback of
LES concerning the unresolved small scales, there are several advantages in exploring
such data in detail. First, comparison of ‘low-’ and ‘high-’ Reynolds-number data may
allow us to check or reveal the Re∗-scaling laws followed by the various statistical
quantities. Second, as will be shown below, the anisotropy of the turbulence entering
the surface-influenced region decreases significantly as Re∗ increases. Consequently
high-Reynolds number-data in which this underlying anisotropy is small shed light on
the role played by the large anisotropy present in low-Reynolds-number situations.
Third, we are particularly interested in checking the validity of the Hunt & Graham
(1978, hereinafter referred to as HG) theory which was initially derived to describe
the modification of second-order turbulence statistics after the sudden insertion of a
flat surface in a high-Reynolds-number homogeneous isotropic turbulent field. Low-
Reynolds-number DNS of decaying turbulence (Perot & Moin 1995) have suggested
that this theory is only able to predict the very early stages of the flow. The situation
simulated in our LES allows us to examine how the HG theory behaves at high
Reynolds number in a statistically steady situation, i.e. after the flow has been
influenced by the surface for a large number of turnover times.

To obtain reliable high-Reynolds-number LES data, we need a suitable subgrid-
scale model in order to ensure that replacing DNS by LES will not produce significant
artifacts in the large scales of the turbulent field. We have already employed the
LES approach to study high-Schmidt-number mass transfer through the walls of a
closed channel (Calmet & Magnaudet 1997, hereinafter referred to as CM). For that
purpose the subgrid-scale stresses and scalar fluxes were closed using the dynamic
mixed model (DMM) proposed by Zang, Street & Koseff (1993). Comparison of
computational results with known turbulent statistics and well-established correlations
for the mass transfer rate revealed a very good quantitative agreement, even with a
modest discretization in the directions of homogeneity. Since turbulence distortion is
less severe near a free surface than near a solid wall, there is no doubt that the LES
approach using the DMM provides an accurate description of the large-scale dynamics
in the surface-influenced region of an open-channel flow. This statement is supported
by the detailed study of Salvetti et al. (1997) where free-surface decaying turbulence
was studied using several different dynamic subgrid-scale models. In this study, the
DMM emerged as one of the two models able to reproduce the characteristics of the
decay process revealed by a reference DNS. As our goal in the present paper is to
use LES as a reasonable generator of data and not to explore its possible refinements
near a free surface, several computational aspects are deliberately ignored here. Such
aspects include the possible optimization of the ‘Leonard constant’ of the subgrid-
scale model (Salvetti & Banerjee 1995) or a systematic grid refinement study (we
have carried out such a study in various configurations, starting from the grid used
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in the present investigation, and did not find any significant effect on the statistics
controlled by large-scale processes).

The plan of the paper is as follows. Section 2 describes the essential features of the
computational approach used to obtain LES data (an extensive description of most
of the technical aspects may be found in CM). Section 3 focuses on the comparison
of low- and high-Reynolds-number r.m.s. velocity and vorticity statistics in the near-
surface region, as obtained from the present LES and from available DNS. Similarly
the high- and low-Reynolds-number energy balances and intercomponent energy
transfer terms are compared in § 4 in order to obtain some insight into the nonlinear
processes involved in the near-surface dynamics. Then a detailed comparison between
the present LES results and predictions of the HG theory is reported in § 5. A
summary and final remarks are given in § 6.

2. Computational aspects
2.1. Numerical method

As stated above, we generate high-Reynolds-number open-channel flow statistics by
using the large-eddy simulation approach coupled with the dynamic mixed model
proposed by Zang et al. (1993). The corresponding three-dimensional time-dependent
equations are

∂V i

∂xi
= 0, (1)

∂V i

∂t
+

∂

∂xj
(V iV j) = −1

ρ

∂P

∂xi
+

∂

∂xj
[2(ν + νT )Sij − (V iV j − V iV j)], (2)

where V i is the ith component of the resolved (or filtered) velocity field, Sij denotes
the resolved strain-rate tensor, and ρ and ν are the density and the kinematic viscosity
of the fluid, respectively. The last term within round brackets in (2) is the so-called
modified Leonard stress tensor (hereinafter denoted as Lij) which can be explicitly

obtained by re-filtering the resolved variable V i and the products V iV j . Finally, the

subgrid-scale viscosity νT = Cs∆
2|S | is assumed to be proportional to the square of

the local grid size ∆ = (∆1∆2∆3)
1/3 and to the local strain rate |S | = (2SijS ij)

1/2, ∆i
being the local grid size in the ith direction. The way in which the parameter Cs is
dynamically computed and locally re-filtered in order to remove possible negative
values of the total viscosity ν+ νT , the filtering procedures and other technical points
are extensively described in Zang et al. (1993) and CM. The reader is also referred to
these papers for a discussion of some interesting properties of the DMM, especially
the importance of evaluating explicitly all components of the modified Leonard stress
tensor, which contains the major part of the subgrid-scale energy.

The governing equations (1)–(2) are solved using the jadim code already described
by CM. Here we just recall that this code employs velocity and pressure as the primary
variables and is based on a finite-volume approach in which all spatial derivatives are
approximated with second-order centred schemes; temporal integration is achieved
by means of a three-step Runge–Kutta/Crank–Nicolson algorithm. Incompressibility
is satisfied at the end of the complete time step by solving a Poisson equation for
an auxiliary potential from which the pressure P is deduced. The overall scheme is
second-order accurate in both time and space. Validations of the code can be found
in CM and in the references mentioned therein.
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2.2. Flow configuration and boundary conditions

The physical situation considered in the present work consists of an open-channel
flow of height 2δ in which turbulence is supposed to be fully developed (figure 1).
The velocity field is assumed to be periodic along the streamwise (x) and spanwise (z)
directions, the flow being driven by a constant streamwise pressure gradient dP0/dx.
The overall momentum balance implies that this pressure gradient is directly related
to the averaged shear stress ρu∗2 at the bottom wall through

dP0

dx
= −ρu

∗2

2δ
, (3)

where u∗ is the so-called friction velocity.
At the bottom wall (y = 2δ) the fluid is subjected to the usual no-slip condition

U = V = W = 0, (4a)

where U, V and W denote the instantaneous velocity components in the streamwise,
vertical and spanwise directions, respectively. The upper boundary (y = 0) is modelled
as a flat shear-free surface subjected to conditions

S12 = S23 = 0, (4b)

V = 0, (4c)

where Sij is the unfiltered strain-rate tensor (throughout the paper subscripts 1, 2
and 3 correspond to directions x, y and z, respectively, see figure 1). Physically,
conditions (4b–c) are appropriate for gas–liquid interfaces in situations where (a)
velocity gradients in the gas are small (i.e. the motion in the liquid is not driven by
the gas), (b) the liquid surface is free of impurities and surfactants, (c) surface tension
and gravity are sufficiently strong to damp the vertical motions at the surface of the
liquid, i.e. the Froude and Weber numbers are assumed to be negligibly small. To
obtain the actual boundary conditions corresponding to the resolved velocity field,
conditions (4a–c) must be filtered along the corresponding boundary. This yields

U = V = W = 0 at y = 2δ, (5a)

S12 = S23 = 0 at y = 0, (5b)

V = 0 at y = 0. (5c)

Conditions (5a)–(5c) complete the set of dynamical equations to be solved numerically.
Placing condition (5a) into the expression for the subgrid stress tensor shows that
the Leonard terms are identically zero at the bottom wall. Since the subgrid stress
must vanish there for all i and j (because of conditions (4a) and (5a)) while several
components of Sij are non-zero, the subgrid-scale viscosity must vanish at the wall.
As is now well established, this condition is automatically fulfilled by the values
of Cs produced by the dynamic procedure (see e.g. Germano et al. 1991). At the
upper surface, conditions (4c) and (5c) imply that the two off-diagonal components
of the subgrid stress tensor involving the vertical direction (i = 2 or j = 2) must be
zero. Injecting boundary conditions (5b–c) into the expression for the subgrid stress
tensor shows that this requirement is satisfied even if the subgrid-scale viscosity keeps
finite values at the surface. Consequently, there seems to be no particular difficulty
in reproducing correctly the large-scale turbulent field in the free-surface region by
means of the present LES approach.
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Figure 1. Coordinate system and computational domain.

2.3. Computational runs

In what follows we shall focus on LES results obtained at a single Reynolds number
Re∗, based on the total depth 2δ and friction velocity u∗, equal to 1280. This value
is selected because the LES study that we carried out previously in a plane channel
flow (CM) was performed at Re∗ = 640, based on the channel half-width δ. The
latter choice suggests that, close to the lower wall, turbulence statistics will be very
similar in both flows. Since these statistics were found to be in very good agreement
with experimental data in CM, a similar agreement is expected here. Additionally,
we can characterize quantitatively the degree to which the surface-influenced region
and the bottom boundary layer interact by introducing the ratio δ/δw where δw is the
characteristic thickness of the region entirely controlled by the solid wall. A rough
estimate of δw is 30ν/u∗ which corresponds to the top of the buffer layer above the
bottom wall. In the various DNS mentioned in § 1, the ratio δ/δw ranges from 2
to 4, suggesting that the integral length scale of the turbulent motions ‘far’ from
the wall cannot be much larger than δw . In contrast, with Re∗ = 1280 we obtain
δ/δw ≈ 20 and we can expect the existence of an intermediate region of the flow
which is neither controlled by the bottom wall nor by the free surface. If so, many
aspects of the dynamics of the near-surface region will be quite independent from the
precise structure of the turbulence produced in the bottom boundary layer. In other
words, this boundary layer will essentially play the role of a source of turbulence and
it could be replaced by another type of source, like an oscillating grid for instance,
without qualitatively affecting most of the statistical characteristics of the turbulence
in the near-surface region.

Length scales in open-channel flows were studied by Handler et al. (1993) who
showed in particular that for a given Reynolds number (Re∗ = 134), the integral
length scales in the homogeneous directions reach comparable maxima in an open
channel and in a closed channel. In CM we computed a closed-channel flow with a
computational domain Lx×Ly×Lz = 2πδ× 2δ× 3πδ/4, the size of which was found
to be convenient for obtaining small values of the two-point velocity correlations for
separation distances of order Lx/2 or Lz/2. Based on the foregoing indications, we
have maintained the previous values of Lx and Lz in the open-channel configuration.
The Lx × Lz plane is discretized uniformly with 32 and 64 mesh points in the x-
and z-directions respectively, yielding mesh spacings ∆x+ ≈ 125 and ∆z+ ≈ 25 in wall
units. In CM, this computationally ‘cheap’ choice combined with the DMM was
found to produce accurate statistics of near-wall turbulence. In the vertical direction,
the grid spacing is determined by the requirement that at least three points lie in
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the viscous sublayer attached to each boundary (see CM). Taking into account the
foregoing considerations, 34 grid points are distributed in the lower half of the flow,
i.e. between y = δ and y = 2δ, following the geometrical transformation used in CM.
This distribution yields a minimum grid spacing ∆y+ = (u∗/ν)∆y ≈ 1 near the lower
wall. The determination of the minimum grid size required near the free surface is
less straightforward because the thickness δV of the corresponding viscous sublayer
is not very well known. Nevertheless, owing to the absence of shear, fewer small-scale
structures are expected to be present near the free surface than near the bottom
wall (Hunt (1984a). Hence it is reasonable to expect that the viscous sublayer near
y = 0 is at least as thick as that near y = 2δ. Consequently, most of the results
presented below correspond to a grid where the points are distributed symmetrically
with respect to the midplane y = δ, i.e. 68 points are used in the vertical direction.
Simulations have also been performed on a grid strongly refined in the upper part of
the domain, yielding a minimum spacing ∆y+ ≈ 0.08 just below the free surface, and
a total number of 82 grid points in the vertical direction. This refinement does not
improve the overall representation of the flow dynamics but it allows us to obtain
statistics very close to the surface (see § 5).

Starting from an arbitrary turbulent field, integration was first performed until
the statistics of the velocity field reached a nearly stationary state. In particular, it
was checked that the mean shear stress had almost reached its linear equilibrium
profile, so that (3) was satisfied. Then integration was pursued for several turnover
times (typically five to ten) in order to obtain converged statistics of second-order
quantities. In the following sections, the statistical quantities which are discussed
result from averages performed in time as well as in the homogeneous directions x
and z. For any variable Φ, 〈Φ〉 denotes the corresponding average, ϕ′′ is the resolved
fluctuation with respect to this average (i.e. the resolved variable Φ equals 〈Φ 〉+ϕ′′),
and ϕ′ is the total (i.e. resolved plus unresolved) fluctuation defined as ϕ′ = Φ− 〈Φ〉.

3. High- and low-Reynolds-number velocity and vorticity statistics
In this section we first use the present LES results for r.m.s. velocity and vorticity

fluctuations to determine the spatial extent of the various near-surface subregions
of the flow. We also compare our high-Reynolds-number data with available low-
Reynolds-number DNS results in order to clarify how near-surface r.m.s. velocity
and vorticity statistics vary with the flow Reynolds number, i.e. to identify the
relevant velocity and length scales near the surface. Available results in open-channel
flows have generally been normalized using u∗ and ν/u∗ as in wall-bounded flows.
Therefore, to keep the comparison with these results easy, we initially adopt the same
normalization and use for instance the dimensionless distance y+

s = yu∗/ν, which
vanishes at the surface itself, to normalize near-surface quantities. However we shall
see below that as the flow Reynolds number increases, the turbulence length scales
become more and more independent of the viscous scale ν/u∗ and another scaling
must be selected.

3.1. Velocity statistics

Figure 2 shows the profiles of the r.m.s. intensities of the resolved turbulent fluctuations
v+

1 = 〈vi′′2〉1/2/u∗ (no summation on i) throughout the flow. Near the bottom wall the
streamwise intensity u+ reaches a maximum value about 3.0 as already found by CM;
this maximum agrees well with the experimental value of 2.9 reported by Komori
et al. (1989). More generally, the statistical characteristics observed close to the lower
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wall are in good agreement with the DNS results reported by Borue et al. (1995). As
the distance to the bottom wall increases, the anisotropy of the turbulence decreases.
In the central region of the flow, say for 0.4 6 y/δ 6 1, the magnitudes of the vertical
and spanwise intensities v+ and w+ are close to one another and the ratio u+/w+

is about 1.25 at y/δ = 0.5. The free surface begins to damp the vertical velocity
fluctuation at y/δ ≈ 0.4. This is the manifestation of the blocking effect due to
the kinematic condition (4c). Closer to the surface, an increase of the tangential
components is observed for y/δ 6 0.15. This behaviour has already been noticed in
experiments (Komori et al. 1982; Rashidi & Banerjee 1988) as well as in computations
(SLHS; Lam & Banerjee 1992; Komori et al. 1993; Borue et al. 1995; Nagaosa 1999;
Handler et al. 1999), and will be discussed in more detail later. At the surface, figure 3
shows that u+ reaches a maximum value of 0.91. This value lies in the range 0.8–1.2
of experimental data reported by Nezu & Rodi (1986) as well as in the range 0.85
(SLHS)–1.0 (Borue et al. 1995) of low-Re DNS results. The spanwise intensity also
reaches a maximum value w+ ≈ 0.82 at the free surface. This value is close to the
experimental result w+ ≈ 0.75 obtained by Komori et al. (1982) at y/δ ≈ 0.2 (no
measurement was performed closer to the surface), and lies in the middle of the wide
range 0.6 (SLHS)–1.05 (Komori et al. 1993) of previous DNS results. As pointed out
in the introduction, detailed measurements are difficult to perform very close to a
free surface and the uncertainty in r.m.s. velocity is quite large (Nezu & Rodi 1986).
Similarly, spanwise velocities are quite sensitive to several aspects of the computations,
like the size of the computational domain and the integration time (see in figure 2
the small undulations that remain on w+ within the lower half of the flow). This
probably explains why a significant dispersion exists in the results mentioned above.
Taking into account this uncertainty, the foregoing results (including the present
ones), suggest that the r.m.s. turbulent intensities measured in the free-surface region
are only weakly sensitive to the flow Reynolds number. This is because dissipation
is very small in the upper part of the flow (see below), so that for high enough
Re∗, near-surface turbulent intensities do not decay significantly as the surface is
approached. Using the above results for u+ and w+, we deduce that the r.m.s. value
of the turbulent kinetic energy at the free surface is about 0.87u∗ in the present
high-Reynolds-number flow. This suggests that u∗ can still be used as a characteristic
scale of the velocity fluctuations in the near-surface region. In figure 3 we also notice
that v+ grows linearly with the distance to the surface in the subrange 0 6 y+

s 6 12.
This region, which is frequently referred to as the Kolmogorov sublayer (Brumley &
Jirka 1988), corresponds to the zone of the flow where all the wavenumbers present
in the vertical velocity spectrum are affected by the surface (see § 5). In this sublayer
the normal strain rate ∂v′′/∂y is constant and is determined, owing to continuity, by
the value of the surface divergence −(∂u′′/∂x+∂w′′/∂z)y=0 of the horizontal motions;
hence the instantaneous flow is dominated by the existence of stagnation zones. This
sublayer, the thickness of which will be confirmed later (see figure 7), is of crucial
importance for estimating mass transfer rates in the high-Schmidt-number regime.

3.2. Vorticity statistics and scaling laws

Figure 4 shows profiles of the three r.m.s. resolvable vorticity fluctuations ω+
1 =

〈ω1
′′2〉1/2ν/u∗2 (no summation on i) in the vicinity of the free surface. Owing to

conditions (5b) and (5c), the only vorticity component that can exist right at the
surface is the vertical one, and this allows the existence of attached vortices and
shear layers (Pan & Banerjee 1995; Nagaosa 1999). According to figure 4, all three
components are almost constant and nearly equal to one another for y+

s > 200, and
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Figure 2. Resolvable turbulent intensities throughout the flow: ——, u+; — —, v+; – – –, w+.
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Figure 3. Resolvable turbulent intensities in the near-surface region: ------------ , u+; ----- -----, v+; -- -- --, w+;
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this is still the case in the core of the flow (not shown). This is another indication
that turbulence is not far from isotropy in this region. From y+

s = 250 to y+
s = 25, the

vertical component ω+
y decreases gently whereas the tangential components increase

by roughly the same amount. Combining the evolution of all three components
reveals that the enstrophy

∑3
i=1(ω

+2
i )/2 increases by about 20% between y+

s = 250
and y+

s = 35 where it exhibits a broad maximum. Then for y+
s 6 30 (resp. y+

s 6 20)
ω+
x (resp. ω+

z ) falls to zero as required by the shear-free boundary condition, whereas
the vertical fluctuation remains nearly unchanged. This behaviour, which is a key
feature of free-surface turbulence (Sarpkaya 1996; Shen et al. 1999), provides a first
estimate of the thickness δV of the viscous sublayer attached to the free surface.
According to figure 4, δ+

V ≈ 25. We shall show in § 5.1 (see also figure 7) that
after a suitable re-scaling this estimate agrees well with theoretical predictions (note
that the Kolmogorov sublayer defined above is simply the top part of this viscous
sublayer).
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Figure 4. Resolvable vorticity fluctuations in the surface region: ——, ω+
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To compare near-surface values of the vorticity fluctuations found in the present
high-Reynolds-number LES with those obtained in previous low-Reynolds-number
DNS we must consider two points. First, as is usual in the LES approach, a significant
part of the vorticity lies in the unresolved motions because the grid does not allow
us to resolve small-scale velocity gradients. A quantitative estimate of the unresolved
vorticity in the surface region can be obtained by using the well-known relation linking
the enstrophy to the pseudo-dissipation 〈ε′〉, both quantities being defined using the
total, i.e. resolved plus unresolved, fluctuations. Right at the free surface, this relation
is, in the present flow, ω′+2

y = ε′+−∂2(v′+2)/∂y+2
s (Tennekes & Lumley 1972, p. 88), with

ω′+y = (ν/u∗2)〈ω′2y 〉1/2, ε′+ = (ν/u∗4)〈ε′〉, and ν ′+ = 〈v′2〉1/2/u∗. Obviously the foregoing
quantities cannot be determined exactly from LES. Nevertheless a good estimate
of ε′+ can be obtained by computing the effective pseudo-dissipation εK involved
in the LES; εK takes into account the effect of the subgrid-scale dissipation and
can be determined from the turbulent kinetic energy balance (see below). Similarly,
since most of the unresolved energy lies in the modified Leonard stress tensor (Zang
et al. 1993; CM), a good estimate of ν ′+2 can be obtained by adding the resolved
vertical energy ν+2 and the corresponding averaged Leonard stress 〈L22〉. In the
vicinity of the surface this procedure yields ε′+ ≈ 3.0× 10−4 (see figure 5b below) and
ν ′+2 ≈ 6.7× 10−5y+2

s (see figure 3). Hence we deduce that the actual surface value of
the normal vorticity fluctuation is ω′+y ≈ 1.3× 10−2, which is nearly twice as large as
the resolved value shown in figure 4.

The second point to be considered in comparing low- and high-Reynolds-number
vorticity statistics is the evolution of ω′+i with the flow Reynolds number, indepen-
dently from the presence of the surface. In homogeneous isotropic turbulence, the
typical magnitude of ω′y = ∂u′/∂z − ∂w′/∂x is ω′+y ∼ (u+/L+∞)(L+∞/λ+) where λ and
L∞ denote the Taylor microscale and the integral scale, respectively. Assuming that
the usual scaling laws of isotropic turbulence hold locally in the present situation
and noting that L∞ is necessarily O(δ) (i.e. L+∞ = O(Re∗)) because the largest scales
are constrained by the total depth, one can expect ω′y+ to evolve as (u+/L+∞)Re∗1/2
(Tennekes & Lumley 1972, p. 67). Then, since we saw that u+ is O(1) at the surface
whatever Re∗, we conclude that ω′y+ must be proportional to Re∗−1/2 near the surface.
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Leighton et al. (1991) and Borue et al. (1995) found surface values of ω+
y equal to

0.035 (Re∗ = 134) and 0.027 (Re∗ = 250), respectively. Applying the proposed scaling
law to their results yields a surface value of ω′+y about 1.2 × 10−2 for Re∗ = 1280, a
prediction which is indeed consistent with our previous estimate. Hence we conclude
that owing to the relation between the magnitude of vorticity fluctuations and the
flow Reynolds number, the surface vorticity varies with the Reynolds number when
normalized by wall variables. This indicates that, while u∗ is still a convenient velocity
scale in the surface region (because the turbulent intensity is O(u∗) whatever Re∗),
ν/u∗ is not the correct length scale to characterize near-surface vorticity and related
quantities. The convenient scale is undoubtedly the Taylor microscale, which may be
expressed in the form

λ/L∞ = (L∞u∗/ν)−1/2 ∼ Re−1/2
∞ , (6)

where Re∞ is the Reynolds number (to be defined in § 5.1) characterizing the turbulent
field just below the surface-influenced region. Note that this evolution of the surface
vorticity with the flow Reynolds number is not caused by the presence of the surface.
It just expresses the fact that for large enough Reynolds number, the length scales
of the turbulent field entering the near-surface region are independent of those that
characterize the turbulence in the region where it is generated, i.e. near the bottom
wall.

Let us now return to the viscous damping of ω+
x and ω+

z . As pointed out above, this
damping occurs in the viscous sublayer of thickness δV where the vertical gradient
of the tangential velocities decreases in order to satisfy the condition (5b) at the
surface, thus inducing a small change in these velocity components. The estimate

δV/L∞ = O(Re
−1/2∞ ) (Hunt 1984a; Wu 1995) yields δ+

V = δVu
∗/ν = O(Re∗1/2). Using

the near-surface evolution of ω+
x and ω+

z obtained by Leighton et al. (1991) and
Borue et al. (1995), it turns out that δ+

V ≈ 8 for Re∗ = 134 and δ+
V ≈ 13 for Re∗ = 250.

Therefrom, the foregoing scaling argument suggests that δ+
V should be between 25

and 30 for Re∗ = 1280, in close agreement with the estimate obtained directly from
figure 4. Comparing with the previous discussion we see that for physical reasons of
different origin, δV and the near-surface value of ω+

y obey the same Re∗-scaling law.

4. Mechanisms governing the energy transport and the intercomponent
energy transfer

Here we use again our high-Re LES statistics and some of the available low-Re
DNS data to analyse the near-surface evolution of the various terms involved in the
budget of the turbulent kinetic energy and that of the diagonal components of the
pressure–strain correlation tensor. This comparison between high- and low-Reynolds-
number results appears to be useful to disentangle viscous and inviscid processes
and to shed light on the influence of the anisotropy of the bulk turbulence on the
intercomponent energy transfer mechanisms.

4.1. Turbulent kinetic energy balance

Taking into account the statistical stationarity of the turbulent field as well as its
homogeneity in the x- and z-directions, the resolvable turbulent kinetic energy (TKE)
budget can be written in the form

0 = −εK − 〈u′′v′′〉∂〈U 〉
∂y

− ∂

∂y

[
〈Kv′′〉+

1

ρ
〈p′′v′′〉+ 〈Li2v′′i 〉 − 〈ν + νT 〉∂K

∂y

]
, (7)
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Figure 5. Terms of the resolvable turbulent kinetic energy balance: (a) throughout the surface-
influenced region y/δ 6 0.4; and (b) close to the surface (y/δ 6 0.15). All terms are normalized by
ν/u∗4. ——, production PK ; · · · · · ·, turbulent transport TK ; — —, pressure-diffusion ΠK ; — – —,
cascade term TLK ; ◦– –◦, diffusion DK ; ×– –×, pseudo-dissipation εK .

where K = (u′′2 + v′′2 + w′′2)/2 and K = 〈K〉. Owing to the splitting of velocity
fluctuations into resolved and unresolved contributions, the exact definition of the
pseudo-dissipation rate εK is rather complicated because it contains the expected
positive contribution 〈(ν + νT )(∂v′′i /∂xk)2〉 (with summation on i and k), plus subgrid-
scale contributions of minor importance (see Moin & Kim 1982 and CM). The
other terms in (7) correspond respectively to production by the mean shear (PK),
transport of turbulence by resolvable velocity fluctuations (TK), pressure diffusion
(ΠK), turbulent transport associated with the Leonard stresses (TLK) (this term is
often referred to as the ‘cascade’ term), and ‘viscous’ diffusion (DK). Profiles of the
various terms in the near-surface region are plotted in figure 5(a, b). The evolutions
observed in these figures are more subtle than those encountered near a rigid wall
because the boundary conditions (5b–c) allow all terms of (7) but PK to be non-zero
at the free surface as can be readily shown by expanding the velocity and pressure
fluctuations in y+

s -Taylor series (see SLHS). Note that using the governing equations
(1)–(2), these Taylor expansions also show that all terms in (7) have a zero derivative
at the free surface, as confirmed by figure 5(b). Production is clearly weak throughout
the near-surface region: while PK and TK are nearly equal for y+

s = 240, the evolution
of the turbulent energy closer to the surface, say for y+

s 6 100, results essentially
from a balance between the total diffusion term TK + ΠK + DK and dissipation.
The cascade term TLK is negligible, whereas it is responsible for about 30% of the
turbulent transport close to the bottom wall (see CM). This difference reflects the fact
that there is a much smaller proportion of small-scale structures near the free surface
than near the bottom wall, owing to the weakness of the mean shear in the upper
part of the flow. The turbulent transport term TK is positive everywhere and brings
turbulent energy towards the surface. Far enough from the surface, say for y+

s > 40,
DK is negligible. In the same region, the pressure-diffusion term ΠK is negative and
reduces the net transport of turbulence towards the surface.

According to figure 5(b), most terms of (7) vary much more rapidly with y+
s when

y+
s 6 25 than at larger distances from the free surface. This is because variations

observed for y+
s 6 25 correspond to viscous mechanisms whereas those observed at

larger distances are driven by inviscid processes. The only exception is the pressure-
diffusion term ΠK which experiences a mild variation everywhere. A typical example
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of viscous process is provided by the evolution of DK for y+
s 6 25. Viscous diffusion

becomes negative because the curvature of the TKE is negative at the surface, a
direct consequence of the increase of the TKE in the near-surface region and of the
boundary conditions (5b–c) that force the normal derivative of the TKE to vanish
at the surface. Despite a significant reduction of εK very close to the surface, this
behaviour of DK produces a net increase of the sink terms in the TKE balance. This
increase is balanced by ΠK which reaches a surface value of the same order as that
of TK . The sharp decrease of εK observed in the region y+

s 6 15 was also noticed by
Handler et al. (1993), Perot & Moin (1995), Walker, Leighton & Garza-Rios (1996),
and Shen et al. (1999). Figure 5(b) indicates that εK is about 40% smaller at the surface
than at y+

s = 30 (i.e. outside the viscous sublayer); this reduction agrees quantitatively
with that found by Walker et al. (1996) who studied the long-time behaviour of freely
decaying turbulence in presence of a free surface. Perot & Moin (1995) argued that
this reduction of εK within the viscous sublayer results from a lack of the usual
cascade mechanism, owing to the turbulent field right at the surface having only
two components. Connections between free-surface turbulence and two-dimensional
turbulence have also been evoked in some other investigations (Pan & Banerjee 1995;
Kumar et al. 1998). However it was clearly established by Walker et al. (1996) that,
even though v′, ∂u′/∂y and ∂w′/∂y are zero at the surface, turbulence remains fully
three-dimensional everywhere because the vertical gradient ∂v′/∂y is non-zero and
provides the required strain rate for producing vertical vorticity through the usual
vortex stretching mechanism (see also Shen et al. 1999 and Nagaosa 1999). In their
recent extension of the HG thoery to the viscous sublayer, Teixeira & Belcher (2000)
found (by comparison with DNS) that rapid distortion theory predicts correctly the
short-time evolution of the dissipation profile up to the surface. They pointed out that
this successful prediction indicates that the near-surface dissipation profile is not a
result of small-scale processes; rather it is determined by the vertical gradients of the
large-scale motions subjected to the viscous damping associated with the free-surface
condition (5b). The present results strongly support this statement and extend it to
longer times, since comparison with the DNS of Walker et al. (1996) suggests that
the dissipation profile is well predicted by the LES, which does not describe in detail
most of the small-scale dynamics in the directions of homogeneity.

The TKE budget was also analysed by SLHS and Handler et al. (1993) for
Re∗ = 134. The corresponding results are qualitatively similar to those discussed
above. They show in particular that TK is positive throughout the surface layer, that
ΠK (resp. DK) becomes positive (resp. negative) close to the surface, and they exhibit
the aforementioned reduction of εK at the free surface. In line with our discussion
concerning the relevant length scales in the surface layer, these results cannot be com-
pared quantitatively with the present ones when expressed in ‘wall’ units. According
to our previous conclusions, such a comparison requires that distances be multiplied
by Re∗−1/2 in the viscous sublayer (y 6 δV ) and by Re∗−1 below it because the relevant
length scale is L∞ in the inviscid part of the surface-influenced layer. Similarly, any
term of (7) previously normalized by u∗4/ν must be multiplied by Re∗ because εK
scales with the enstrophy, and so does the whole diffusion term TK + ΠK + DK .
It must however be noticed that DK is a viscous contribution which depends also
on Re∗; consequently TK and ΠK may also exhibit some Re∗-dependence as will be
shown below. Since the Reynolds number of our LES is nearly ten times larger than
that of SLHS, this re-scaling suggests that the terms of (7) plotted in figure 5(b)
should be one order of magnitude smaller than theirs, while the typical length over
which any variation of these terms occurs in the range y+

s 6 25 should be about
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three times larger. This statement can be easily confirmed. For instance in figure 9
of SLHS one observes that the decrease of DK (resp. εK) towards its surface value
takes place over roughly eight (resp. six) ‘wall’ units whereas our figure 5(b) shows
that the same trend starts around y+

s = 25 (resp. y+
x = 16). Similarly SLHS found a

surface value of the pseudo-dissipation of about 3.2×10−3 whereas the corresponding
value is about 3.0× 10−4 in figure 5(a). In contrast, their surface value of DK is only
three times larger than that of figure 5(a) and hence their surface values of TK and
ΠK are only six times larger than those of our LES. As suggested previously, this
is a low-Reynolds-number effect related to the dependence of DK on Re∗; since the
increase of the TKE as the surface is approached is much smaller when Re∗ is small
(as confirmed by the vertical profile of the TKE in figure 2 of SLHS), this results in
smaller surface values of ∂2K/∂y2 and DK .

4.2. Pressure–strain correlations

To save space we do not comment on the budget of the individual components of
the resolvable Reynolds stress tensor. However, it is of great interest to describe the
evolution of the diagonal components of the resolvable pressure–strain correlation
tensor φij = 2(u∗4/ν)〈P Sij〉 that governs energy transfer between the three components
of the resolvable turbulent energy. This evolution is shown in figure 6 in the region
y+
s 6 180, i.e. y/δ 6 0.28. In the absence of any boundary, the usual role of the

pressure–strain term is to reduce the anisotropy that may exist in the turbulent field
(mechanism I). However, it has been recognized for a long time that the presence
of an impermeable boundary affects not only the normal r.m.s. velocity but also
the tangential components of the turbulent energy. The most common interpretation
of this phenomenon is that energy is transferred from the normal component to
the tangential ones through pressure–strain correlations (Launder, Reece & Rodi
1975; Gibson & Launder 1978). Such a mechanism suggests that in the presence
of a boundary, φij tends to increase the local anisotropy rather than to decrease it
(mechanism II). Throughout the region shown in figure 6 we have 〈u′′2〉 > 〈w′′2〉 > 〈v′′2〉
(see figure 2). According to figure 6, φ22 is negative for y+

s 6 80, indicating that near
the surface v+ transfers energy towards both tangential r.m.s. fluctuations, and this
corresponds indeed to mechanism II. Only far enough from the surface (y+

s > 80) is
the isotropization process observed; there φ11 is negative, so that the largest turbulent
intensity u+ transfers energy towards v+ and w+. Very close to the surface one notices
that the spanwise component receives slightly more energy than the streamwise one.
This trend was also observed by SLHS, Komori et al. (1993) and Nagaosa (1999).
However the difference φ33−φ11 is much larger in these low-Reynolds-number DNS,
and this results in a much larger increase of w+ compared to u+ near the free surface.

In order to disentangle the processes affecting φij , we compare our results with
those of SLHS. For this purpose we apply the re-scaling laws derived above, keeping
in mind that φij scales with dissipation at high Reynolds number, i.e. it must be
proportional to Re∗−1. We find that the surface value of φ33 determined by the
previous authors is ten times that found in figure 6. Similarly, the distance between
the location at which φ33 reaches a minimum and the outer edge of the viscous
sublayer (y = δV ) is ten times larger in figure 6 than in the corresponding plot of
SLHS. These results clearly indicate that φ33 is essentially governed by the inviscid
processes related to the blocking effect rather than by viscous processes due to the
viscous sublayer. When the same procedure is applied to φ11 it reveals very different
behaviours. For instance, the surface value of φ11 found by SLHS is about three
times that found in figure 6. Similarly the location at which φ11 becomes positive in
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the low-Reynolds-number DNS lies within the viscous sublayer whereas this change
of sign arises much farther from the surface (y+

s ≈ 85) in the high-Reynolds-number
case. At first glance these differences could be attributed to near-surface viscous
effects. However, if turbulence were perfectly axisymmetrical about the y-axis, the
evolution of u′′ and w′′ would be identical, irrespective of viscous effects, and so
would be that of φ11 and φ33. Hence it is likely that the differences observed between
high- and low-Reynolds-number behaviours originate in the horizontal anisotropy
of the turbulence entering the surface-influenced region. In the DNS of SLHS the
free surface begins to affect turbulent intensities at a distance from the bottom wall
(2δ − y)u∗/ν about 95. At such a distance, the bottom wall still controls the local
structure of the turbulent field almost entirely and the anisotropy of the large-scale
motions is large. More precisely, at this location SLHS data indicate u+2/K+ ≈ 1.15,
v+2/K+ ≈ 0.30, w+2/K+ ≈ 0.55, with K+ = K/u∗2. At the same normalized distance
from the bottom wall (corresponding to y/δ = 1.85 in figure 2), our LES data yield
u+2/K+ ≈ 1.16, v+2/K+ ≈ 0.30, w+2/K+ ≈ 0.54, confirming that turbulent intensities
scale completely with ν/u∗, i.e. with wall variables. In our high-Reynolds-number
flow, figure 2 indicates that turbulence intensities begin to be affected by the free
surface at y/δ ≈ 0.4, a location where u+2/K+ ≈ 0.89, v+2/K+ ≈ 0.57, w+2/K+ ≈ 0.54.
These values are much closer to isotropy than those of SLHS, confirming that the
anisotropy of the turbulence entering the surface region decreases significantly as the
flow Reynolds number increases. Then the origin of the differences between SLHS
data for φ11 (and φ22 by virtue of continuity) and the present LES results becomes
clear. Whatever the Reynolds number, mechanism II acts in the surface layer, that
is v+ transfers energy towards u+ and w+. However, at low Reynolds number the
streamwise fluctuation entering the surface layer is much larger than the other two.
Hence mechanism I acts through most of this layer to reduce this outer anisotropy,
that is u+ transfers energy towards v+ and w+. Combining both processes shows
that mechanisms I and II act together to bring energy to the spanwise fluctuation.
This explains why the increase of w+ close to the free surface is much larger than
that of u+ in the low-Reynolds-number case. In contrast, at large Reynolds number,
mechanism I acts secondarily since the outer anisotropy is moderate, and the entire
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surface layer is dominated by mechanism II. In figure 6 φ11 and φ33 are seen to have
similar magnitudes throughout a large part of the surface layer (roughly y+

s 6 80),
indicating that the high-Reynolds-number flow simulated in our LES is fairly close to
an ‘ideal’ flow where turbulence would be axisymmetrical about the vertical axis. To
summarize, we may say that inside the surface-influenced layer, φij(y) scales with the
anisotropy tensor Aij = 〈v′′i v′′j 〉/K − (2/3)δij (δij being the Kronecker tensor) evaluated
at the bottom of the surface layer, and with the relevant dimensionless distance, i.e.
(y − δV )/L∞ if y > δV or y/δV if y < δV . This argument is consistent with the fact
that, having noticed similar values of w+2/K+ in the present LES and in the DNS of
SLHS at the bottom of the surface-influenced layer, we observe identical evolutions
of φ33 throughout it.

5. Comparison of LES results with predictions of the HG theory
As stated in the introduction, a theory based on the rapid distortion approxima-

tion was elaborated by HG to describe the modifications induced by the sudden
insertion of a flat impermeable surface to the second-order turbulent moments of
an initially homogeneous isotropic turbulence. Given its basic assumptions, it is gen-
erally supposed that this theory is valid only for short time after surface insertion.
While low-Reynolds-number DNS performed by Perot & Moin (1995) reinforce this
suspicion, several experiments in which the turbulence is statistically steady suggest
that the HG theory may be valid even at long time. It is the purpose of this section
to reconsider this point by comparing the high-Reynolds-number LES results with
some of the most significant predictions of the HG theory, especially those concerning
the evolution of the integral length scales, one-dimensional velocity spectra and r.m.s.
velocity fluctuations throughout the so-called source layer, i.e. the almost inviscid part
of the surface-influenced layer.

5.1. Global characteristics of the surface-influenced layer

To compare LES data with predictions from the HG theory, we first need to determine
the integral length scale L∞ and the velocity scale u that characterize the turbulent
field just below the surface-influenced layer. This will allow us to evaluate the thickness
of the various subregions of the surface-influenced layer and the changes of the r.m.s.
velocity fluctuations throughout these subregions in terms of the turbulent Reynolds
number.

The length scale L∞ may easily be obtained using Taylor’s estimate εK ∼ u3/`
(Batchelor 1953, p. 103), since the turbulent macroscale ` is just 2L∞ in isotropic
turbulence (Tennekes & Lumley 1972, p. 273). Using the isotropic relation u3 =
(2K/3)3/2, we deduce L∞ from the profile of the quantity (2K/3)3/2/(2εK) plotted
through the central part of the flow: this procedure shows a clear plateau at 0.40δ.
This value indeed corresponds to the location beyond which velocity fluctuations
v+ and w+ plotted in figure 2 follow separate evolutions. Hence this result confirms
the prediction of HG that the surface affects the flow field over a surface-influenced
region (or surface layer) whose typical thickness is L∞ (figure 7). The above value of
L∞ may be confirmed by considering the low-wavenumber part of the longitudinal
spectrum of the streamwise velocity Eu(kx) at y+

s = 180 (figure 8 below), a location
where near-surface effects are still small. Therefrom, the general relation between
longitudinal spectra and integral length scales Ei(kx → 0) = 〈v′′2i 〉xLi/π (Tennekes &
Lumley 1972, p. 273) yields L∞ = xLu ≈ 0.39δ, xLu denoting the longitudinal integral
scale. In addition we notice that at the same location the longitudinal spectrum of the
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spanwise velocity Ew(kx) yields xLw ≈ 0.23δ. Hence the isotropic relation xLw =x Lu/2
is approximately satisfied. Using the above value of L∞ and the value of K at
y ≈ L∞, we deduce that the turbulent Reynolds number Re∞ = u`/ν characterizing
the turbulence below the surface-influenced region is about 360.

We can now re-evaluate the thickness of the various subregions of the surface-
influenced layer in terms of the turbulent Reynolds number (figure 7). The thickness
of the viscous sublayer is obtained by using the estimate δ+

V ≈ 25 deduced from
figure 4. This yields δV/L∞ = δ+

V (Re∗L∞/δ)−1 ≈ 0.098. Hunt (1984a) pointed out

that δV/L∞ must scale with Re
−1/2∞ , and measurements by Brumley & Jirka (1987)

indicated δV/L∞ ≈ 2.0Re
−1/2∞ . Our estimate of δV/L∞ agrees well with this finding,

since the above value, Re∞ = 360, yields 2.0Re
−1/2∞ ≈ 0.105. Hence we conclude that

in our high-Reynolds-number LES, the thickness of the viscous sublayer is typi-
cally one-tenth of L∞. The thickness δK of the Kolmogorov sublayer detected in
figure 3 can also be evaluated (figure 7). For isotropic turbulence, the Kolmogorov

microscale ηK is estimated to be 2.0Re
−3/4∞ L∞ (Brumley & Jirka 1988). In the present

high-Reynolds-number flow this yields ηK/L∞ ≈ 2.4× 10−2, and figure 3 suggests

δK/L∞ ≈ 4.7× 10−2, i.e. δK ≈ 2.0ηK or equivalently δK/L∞ ≈ 4.0Re
−3/4∞ .

Within the Kolmogorov sublayer we may write v′′ ≈ y(∂v′′/∂y) or equivalently,

v+ = O(ε
+1/2
K )y+

s = O(Re−1∞ )y+
s according to the scaling laws discussed in § 3.2. Then,

since η+
K = O(Re

1/4∞ ) (Monin & Yaglom 1975, p. 349), integration of v+ across the
Kolmogorov sublayer yields the r.m.s. vertical velocity fluctuation (∆v)K at y = δK as

(∆v)K/u = O(Re−1/4
∞ ). (8a)

Hence, for turbulent Reynolds numbers of some hundreds, 20% to 30% of the total
variation of the vertical fluctuation in the surface-influenced region takes place within
the Kolmogorov sublayer. The variation (∆u)V of the tangential r.m.s. velocities across
the viscous sublayer shown in figure 7 can also be estimated by the following argu-
ment. Within the viscous sublayer ∂v′′/∂x is much smaller than ∂u′′/∂y. This implies
ω′′z ≈ −∂u′′/∂y, so that we can write ∂〈u′′2〉/∂y ≈ −2〈u′′ω′′z 〉. Integrating this relation
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across the viscous sublayer yields u(∆uU)V = O(〈u′′ω′′z 〉δV ) = O(〈u′′ω′′z 〉L∞Re−1/2∞ ). To
estimate the correlation 〈u′′ω′′z 〉, care must be taken that the characteristic length
scales of velocity and vorticity fluctuations are different, since u′′ may be charac-
terized by scales of O(L∞), whereas ω′′z is characterized by scales of O(λ), λ being
the Taylor microscale. Assuming that this weak overlap in spectral space decreases
the correlation between u′′ and ω′′z by a factor proportional to the scale ratio λ/L∞
(Tennekes & Lumley 1972, p. 81) yields 〈u′′ω′′z 〉 = O(u u/λ λ/L∞) = O(u2/L∞), from
which we deduce

(∆u)V /u = O(Re−1/2
∞ ). (8b)

According to this estimate, (∆u)V /u should be about 5% for Re∞ = 360, a prediction
confirmed by the r.m.s. velocity profiles of figure 3.

5.2. Spectra and variances

One-dimensional velocity spectra are plotted in figure 8 for various distances to the
free surface. Only the low-wavenumber range (typically kxδ 6 8) is meaningful in
these spectra, owing to the coarse mesh used in the streamwise direction. Moreover
the minimum resolvable wavelength is 2πδ/16 ≈ 0.39δ which is of the same order as
L∞. Hence effects affecting wavenumbers larger than 2πL−1∞ are not resolved. Despite
these limitations, figure 8 gives interesting information which is more easily discussed
by introducing the normalized distance YS = (y − δV )/(L∞ − δV ); with this definition,
the range 0 < YS < 1 corresponds to the ‘source’ layer of the HG theory (see figure 7),
i.e. to the part of the surface-influenced region where viscous effects are negligible
(note that instead of YS , HG defined the dimensionless length scale Y = y/L∞ because
they assumed that δV/L∞ was negligibly small). Figures 8(a) and 8(c) show that for
0 < YS < 1 the low-wavenumber part of the streamwise spectrum Eu(kx) is almost
unaffected by the distance to the surface while the energy corresponding to kxδ = 1
in the spanwise spectrum Ew(kx) increases as the surface is approached: at y+

s = 21
which is close to YS = 0, Ew(kxδ = 1) is 2.5 times larger than at y+

s = 180 and the ratio
Eu(kxδ = 1)/Ew(kxδ = 1) reaches the value 1.03. These trends are consistent with the
HG theory which predicts that in the limit kxL∞ → 0, Eu(kx) remains unchanged as
YS → 0 while Ew(kx) increases by a factor of 2, so that the ratio Eu/Ew becomes unity
at YS = 0. Using the values of u+ and w+ corresponding to y+

s = 21 (figure 3), the
evolution of the streamwise and spanwise integral length scales across the source layer
can also be obtained. This yields xLu(YS → 0) ≈ 0.80L∞ and xLw(YS → 0) ≈ 0.96L∞,
which shows that the streamwise (resp. spanwise) integral scale is reduced (resp.
increased) as the surface is approached. This is also consistent with the theory,
which for isotropic turbulence predicts xLu = xLw = (2/3)L∞ for YS → 0. Most of
the quantitative differences remaining between the LES results and the theoretical
predictions may probably be explained by the finite thickness of the viscous sublayer
which limits the amplification of the tangential velocities slightly below the theoretical
prediction, and by the anisotropy of the turbulence entering the surface region which
is not accounted for by the theory.

The most spectacular influence of the surface is of course found in the v′′-spectrum.
As the surface is approached, all wavenumber components of the v′′-spectrum resolved
by the computational grid are progressively damped, owing to the blocking of the
large eddies by the surface. A similar evolution was reported in the experiments of
Thomas & Hancock (1977), Brumley & Jirka (1987) and Hannoun, Fernando & List
(1988), as well as in the DNS studies of Handler et al. (1993) and Pan & Banerjee
(1995). Note, however, that moderate-to-high wavenumber components (typically
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Figure 8. One-dimensional velocity spectra in the surface-influenced region: (a) u′′; (b) v′′; (c) w′′.

kx > (L∞YS )−1) that are not resolved in the present LES (nor in previous ‘DNS’, see
Handler et al. (1993)) are not blocked by the surface, so that the spectral density of
Ev(kx) is unaltered at such wavenumbers in the aforementioned experiments. Within
the source layer, the HG theory predicts that in the low-wavenumber range kxYS � 1,
the v′-spectrum obeys the law Ev(kx) = γε

2/3∞ (L∞YS )5/3 with γ = 1.125 (Hunt 1984b), ε∞
being the dissipation rate of the free-stream turbulence. To check this prediction, we
replace ε∞ by the average value εKav of εK in the layer 0 < YS < 0.7 (ε+Kav ≈ 4.5× 10−4

according to figure 5a) because it can be shown that at leading order the distortion of
the flow in the source layer does not alter the dissipation rate (see Teixeira & Belcher

2000; Magnaudet 2003). Evaluating the product Ev(kx)ε
−2/3
Kav (L∞YS )−5/3 then shows

that the Y
5/3
S scaling law is supported well by the numerical results. The value of this

product, i.e. γ, is found to fluctuate slightly in the range 1.0–1.2, the fluctuations being
probably due to the marginally convenient statistical sampling and to the underlying
inhomogeneity of the flow not accounted for by the theory. The essential consequence

of the above scaling law is that the r.m.s. vertical velocity evolves as Y
1/3
S in the

source layer. Figure 9 shows the evolution of v+3 for y 6 L∞. Outside the viscous
sublayer, this evolution is almost perfectly linear up to YS = 0.7, thus confirming the

Y
1/3
S scaling. Note that the linear fit shown in figure 9 suggests a virtual origin of
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Figure 9. Evolution of the normal velocity fluctuation in the surface region:
——, v+3; - - - - -, v+3 ∝ y/δ.

the source layer located at y/δ ≈ 0.05, thus emphasizing the existence of the viscous

sublayer. Theoretical integration of the v′-spectrum yields 〈v′2〉 = βε
2/3∞ (L∞YS )2/3 with

β ≈ 1.8 according to the theory (Hunt 1984b; Magnaudet 2003). Using the slope of
the curve plotted in figure 9 and the value of ε+Kav given above yields a slighly higher
value β ≈ 2.0 in the present flow. From the above results, the vertical integral scale is
found to evolve as xLv/L∞ = π(γ/β)YS close to the surface. The present LES results
suggest a value of α = πγ/β between 1.6 and 1.9 while the theory predicts α = 1.96
(Hunt 1984b).

The HG theory also predicts that the difference between the surface value and the
local value of the r.m.s. tangential velocities evolves as ε

1/3∞ (L∞YS )1/3 when YS → 0
(see also Magnaudet 2003). Figure 10 shows the evolution of (u+2

S − u+2)3/2 and
(w+2

S − w+2)3/2 for y 6 0.2L∞ (the subscript S refers to the corresponding surface
value). Both curves confirm the theoretical prediction for YS 6 0.1, approximately.
Nevertheless the range of YS within which this Y

1/3
S scaling holds is narrow compared

to what we found previously for the vertical velocity. This is also in line with the
theory, which predicts that the next term in the expansion of u+2 and w+2 vs. YS is
linear, hence limiting the validity of the leading-order expansion, whereas no such
term exists in the expansion of the vertical velocity (see the discussion in appendix A
of Magnaudet 2003). This linear term is due to the distortion of the large-scale
motions by the surface and its sign is opposite to that of the Y

2/3
S contribution.

Owing to the action of the mean shear in the open-channel flow, there is more energy
in the large scales of the streamwise component than in those of the spanwise one.
Hence the numerical prefactor of the linear term is larger in u+2 than in w+2, which
explains why the curve of figure 10 corresponding to u+ has a smaller slope (≈ 2.10)
than that corresponding to w+(≈ 3.03).

An important consequence of the linear term just mentioned is that the tangential
r.m.s. velocities and the turbulent kinetic energy pass through a minimum within the
surface-influenced region. Using a von Karmàn spectrum to model the free-stream
turbulence, HG found that K decreases from the value K∞ = 3/2u2 corresponding to
YS →∞ to a minimum value 0.865 K∞ reached at YSmin ≈ 0.27, and then re-increases
up to the surface where K(YS = 0) = K∞ again, since 〈u′2〉(YS = 0) = 〈w′2〉(YS = 0) =
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Figure 11. Evolution of the turbulent kinetic energy in the surface-influenced region:
——, K/K∞; — —, v+; – – –, w+.

(3/2)u2. The profile of K/K∞ found in our LES is plotted in figure 11. The ratio of
K/K∞ is found to be less than unity over the whole range 0 < YS < 1 (corresponding
to 0.05 < y/δ < 0.4); it reaches a minimum Kmin/K∞ ≈ 0.84 located at YSmin ≈ 0.22,
and recovers its ‘free-stream’ value within the viscous sublayer at y/δ ≈ 0.02. Clearly,
this evolution agrees quantitatively well with the predictions of HG, bearing in mind
that the theory assumes isotropic turbulence in the free stream and neglects any
influence of the viscous sublayer.

6. Summary and conclusions
We have used the large-eddy simulation approach to produce statistical data

concerning the turbulent field in the surface-influenced region of a statistically steady
high-Reynolds-number open-channel flow. Comparisons with low-Reynolds-number
DNS results were made possible via a re-scaling. In particular we showed that the
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appropriate length scale of all near-surface quantities related to vorticity fluctuations
is the Taylor microscale and not the viscous scale ν/u∗. This is simply a consequence
of the fact that at high enough Reynolds number, the near-surface turbulence has
lost the memory of the bottom boundary layer within which it was generated. At high
Reynolds number, the turbulent kinetic energy budget near the surface was found
to be dominated by dissipation and turbulent transport which brings energy towards
the surface. Pressure-diffusion was found to play a significant role by lowering the net
transport in the major part of the surface-influenced layer, and by increasing it very
close to the surface. In line with available DNS results, the dissipation was found
to exhibit a sharp minimum at the free surface. The fact that the correct dissipation
profile close to the surface is recovered through a LES in which most of the small-
scale processes are not resolved confirms that near-surface dissipation is essentially
governed by viscous effects affecting the large-scale motions. Since the anisotropy
of the turbulence entering the surface region decreases significantly as the Reynolds
number increases, the pressure–strain correlations found in the present LES exhibit
interesting differences compared to the low-Reynolds-number situation. In particular,
energy from the normal r.m.s. velocity is redistributed almost equally between the two
tangential components, whereas the spanwise component is favoured at low Reynolds
number. Overall, comparison with available low-Reynolds-number data showed that
the intercomponent energy transfer is very sensitive to the anisotropy of the turbulent
field entering the surface-influenced layer.

We carried out a systematic comparison between the predictions of the HG theory
and LES statistical results in the surface-influenced layer. Numerical results and
theoretical predictions concerning one-dimensional spectra, integral length scales and
r.m.s. velocities were found to be in very good agreement. In particular, the evolution
of the low-wavenumber subrange of all three components of the numerical one-
dimensional velocity spectra agrees very well with the theory. As a result, the normal

r.m.s. velocity predicted by the LES is proportional to Y
1/3
S over most of the source

layer and the proportionality coefficient is close to its theoretical value. Variations of
the turbulent kinetic energy within the source layer also agree with HG’s predictions,
especially concerning the position and amplitude of the minimum of the TKE.

Overall, the present numerical results indicate that outside the viscous sublayer,
the HG theory, which was initially derived for studying the short-time evolution of
shearless turbulence in the presence of an impermeable boundary, also provides an
accurate description of the flow at long time. This conclusion contrasts with that of a
low-Reynolds-number computational investigation (Perot & Moin 1995), where it was
claimed that the description corresponding to the HG theory is only valid at short
times following boundary insertion. Despite the evidence provided by the present
numerical results, the fundamental reason for this agreement remains unknown at
present. In particular, it is obvious from the results concerning the turbulent kinetic
energy balance and the pressure–strain correlations discussed at § 4 that the long-time
dynamics of the flow are dominated by nonlinear processes. Since such processes are
not taken into account in the rapid distortion approximation, how can the HG theory
remains valid at long time? To clarify this important question, several theoretical
aspects of the problem are revisited in a companion paper (Magnaudet 2003). In brief,
the crucial point appears to be that for large enough turbulent Reynolds number, the
velocity correction induced by the presence of the surface is dominated at all time
by the irrotational contribution evaluated by HG, i.e. rotational corrections remain
weak outside the viscous sublayer. This argument explains why low-Reynolds-number
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DNS data disagree with HG’s predictions at long time while high-Reynolds-number
experimental and LES results closely follow these predictions. Moreover it may be
shown (Magnaudet 2003) that the leading surface-induced correction to the pressure
field derives from a Bernoulli-like equation incorporating all the dominant linear and
nonlinear processes associated with the presence of the surface. This is the basic
reason why the HG predictions are compatible with the turbulent transport and
intercomponent energy transfer mechanisms described in the present investigation.

The computer resources used in this work were provided by the Institut pour le
Développement des Ressources en Informatique Scientifique (IDRIS/CNRS). We are
indebted to the IDRIS staff and the Computer Service of the Institut de Mécanique
des Fluides de Toulouse for their constant technical support.
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